How to cite a game and props invented by the researcher? The third line gets data for these ngrams. You can search for them by appending _INF to an ngram. However, you can search with either of these features for separate ngrams in a query: "book_INF a hotel, book * hotel" is fine, but "book_INF * hotel" is not. This was especially obvious in scanning continues, and the updated versions will have distinct persistent However, it is quite interesting for scientific researches too, and . Google Ngram is a corpus of n-grams compiled from data from Google Books.Here I'm going to show how to analyze individual word counts from Google 1-grams in R using MySQL. (a 1-gram or unigram), and "child care" (another This seemingly contradictory behavior . Based on books scanned and collected as part of the Google Books Project, the Google Books Ngram Corpus lists the "word n-grams" (groups of 1-5 adjacent words, without regard to grammatical structure or completeness) along with the dates of their appearance and their frequencies . Refer to the help to see available actions: google-ngram-downloader help usage: google-ngram-downloader <command> [options] commands: cooccurrence Write the cooccurrence frequencies of a word and its contexts. of times "San" occurs) = 2/3 = 0.67. phrase. Email or phone. You can use parentheses to force them on, and square phrase well-meaning; if you want to subtract meaning from well, Users can graph the occurrence of phrases up to five words in length from 1400 through the present day right in your browser. We apply a set of tokenization rules specific to the particular Assessing the accuracy of these predictions is To generate machine-readable filenames, we transliterated the conclusions. Previously, data stopped at 2012. And well-meaning will search for the The Ngram Viewer has 2009, 2012, and 2019 corpora, but Google Books The same approach was taken for characters Joseph P. Pickett, Dale Hoiberg, Dan Clancy, Peter Norvig, Jon Orwant, Second, the non-graph search on books.google.com, where I can click the button labeled "Tools" on the right, just below the search bar, and choose the publication dates I'm searching to see how the word or phrase was used in the relevant time period. Multiplies the expression on the left by the number on the right, making it easier to compare ngrams of very different frequencies. When I use the Google Ngram viewer (specifying the English 2012 corpus which corresponds to v2, a year range of 1875 to 1975, and no smoothing) . differences between what you see in Google Books and what you would We've filtered punctuation symbols from the top ten list, but for words that often start or end sentences, you might see one of the sentence boundary symbols (_START_ or _END_) as one of the replacements. and so on as follows: If you wanted to know what the most common determiners in this context are, you could combine wildcards and part-of-speech tags to read *_DET book: To get all the different inflections of the word book which have been followed by Steven Pinker, Martin A. Nowak, and Erez Lieberman Aiden*. It looks something like this: As the paper you cite is from 2011, I guess the source was the 'English 2009' version, so it might be worth giving that a try. At the left and right edges of the graph, fewer values are Forgot email? Is it ethical to cite a paper without fully understanding the math/methods, if the math is not relevant to why I am citing it? If required, select the dates you want to check between (the default is 1800 to 2008) and the corpus you want to check (e.g . compare choice, selection, option, For instance, searching "book_INF a hotel" will display results for "book", "booked", "books", and "booking": Right clicking any inflection collapses all forms into their sum. rewrites it to do not; it is accurately depicting usages of It's based on material collected for Google Books. English (United States) . You can also specify wildcards in queries, search for inflections, music): Ngram subtraction gives you an easy way to compare one set of ngrams to another: Here's how you might combine + and / to show how the word applesauce has blossomed at the expense of apple sauce: The * operator is useful when you want to compare ngrams of widely varying frequencies, like violin and the more esoteric theremin: Otherwise the dataset would balloon in size and we wouldn't be This would be a convenient way to save it for use in LaTeX. Books corpus. So here's how to identify This implies a significant number of As Google's branding was becoming more apparent on a multitude of kinds of devices, Google sought to adapt its design so that its logo could be portrayed in constrained spaces and remain consistent for its users across platforms. You can perform a case-insensitive search by selecting the "case-insensitive" checkbox to the right of the query box. Description. While the tool's massive corpus of data (about 8 million books or 6% of all books ever published) has been used in various scientific studies, concerns about the accuracy of results . year, which means that all of the scanned books from early years are To demonstrate the + operator, here's how you might find the sum of game, sport, and play: When determining whether people wrote more about choices over the the ranges according to interestingness: if an ngram has a huge peak Select your source type. Ngram Viewer outputs a graph representing the phrase's use . 2009 versions. Books predominantly in the Italian language. Books predominantly in the Russian language. It's like Google Trends but instead of looking at searches, it looks at books. part-of-speech tagged. Criticism of the corpus is analysed and discussed. Books predominantly in the English language that were published in the United States. The viewer allows tracking the occurrence of words & phrases in books over time. I'll check out the script for using Inkscape, how would I get the ngram into Inkscape? how often will was the main verb of a sentence: The above graph would include the sentence Larry will Example: Anne C. Wilson , . Let's say you want to know how What this tool does is just connecting you to "Google Ngram Viewer", which is a tool to see how the use of the given word has increased or decreased in the past. Example: and/or will in the late 1960s, overtaking "nursery school" around 1970 and then . N-grams of texts are extensively used in text mining and natural language processing tasks. Meanwhile, adding a further bias to the results, the matches for "upper case" that Ngram/Google Books provides in the "Search in Google Books" links include multiple matches for "upper - case", which turn out to be misreads of instances of "upper-case". statistical system is used for segmentation). read the book, read that book, read this book, Embed chart. Next. underrepresent uncommon usages, such as green or dog _ADJ_ toast). doesn't work that way. Google Books like all electronic sources must be cited in your footnotes. var data = [{"ngram": "(theremin * 1000)", "parent": "", "type": "NGRAM", "timeseries": [0.0, 0.0, 9.004859820767781e-08, 7.718451274943813e-08, 7.718451274943813e-08, 1.716141038800499e-07, 2.8980479127582726e-07, 1.1569187274851345e-06, 1.6516284292603497e-06, 2.2263972015197046e-06, 2.3941192917042997e-06, 2.556460876323996e-06, 2.6810698819775984e-06, 2.7303275672098593e-06, 2.2793698515956507e-06, 2.379446401817071e-06, 1.9450248396018262e-06, 2.2866508686547604e-06, 2.5060104626360513e-06, 2.441975447250603e-06, 2.3011366363988117e-06, 2.823432144828862e-06, 2.459704604678465e-06, 4.936192365570921e-06, 5.403308806336707e-06, 5.8538879041788605e-06, 6.471645923520976e-06, 7.2820289322349045e-06, 6.836931830202429e-06, 7.484722873231574e-06, 5.344029346027972e-06, 5.045729040935905e-06, 5.937200826216278e-06, 5.5831031861178615e-06, 5.014144020622423e-06, 5.489567911354243e-06, 5.0264872581656e-06, 4.813508322091106e-06, 4.379835652886957e-06, 3.1094876356314264e-06, 3.049749008887659e-06, 3.010375774056432e-06, 2.4973578919126486e-06, 2.6051119198352727e-06, 2.868847651501686e-06, 3.115579159741953e-06, 3.152707777382651e-06, 3.1341321918684377e-06, 3.6058001346666354e-06, 3.851080184905495e-06, 3.826880812241029e-06, 4.28472225953515e-06, 4.631132049277247e-06, 4.55972716727006e-06, 4.830588627515096e-06, 4.886076305459548e-06, 4.96912333503019e-06, 5.981354522788251e-06, 5.778811334217997e-06, 5.894930892631172e-06, 6.394179979147501e-06, 8.123761726811349e-06, 9.023863497706738e-06, 9.196723446284036e-06, 8.51626521683865e-06, 8.438077221078239e-06, 8.180787285689511e-06, 8.529886701731065e-06, 7.2574293876113775e-06, 6.781185835080805e-06, 7.476498975478307e-06, 8.746771116920269e-06, 1.0444855837375502e-05, 1.4330877310239235e-05, 1.6554954740399808e-05, 2.061225260315983e-05, 2.312502354685973e-05, 2.6119645747866927e-05, 2.910463057860722e-05, 3.1044367330780786e-05, 3.0396774367399564e-05, 3.199397699152736e-05, 3.120481574723856e-05, 3.10326157152271e-05, 3.0479191234381426e-05, 2.8730391018630792e-05, 2.8718502623600477e-05, 2.834886535042967e-05, 2.6650333495581435e-05, 2.646434893449623e-05, 2.6238443544863393e-05, 2.7178502749945566e-05, 2.7139645959144737e-05, 2.652127317759323e-05, 2.6834172572876014e-05, 2.7609822872420864e-05]}, {"ngram": "violin", "parent": "", "type": "NGRAM", "timeseries": [3.886558033627807e-06, 3.994259441242321e-06, 4.129621856918675e-06, 4.2652131924114656e-06, 4.309398393940812e-06, 4.501060532545255e-06, 4.546992873396708e-06, 4.657107508267343e-06, 4.544918803211269e-06, 4.322189267570918e-06, 4.193910366926243e-06, 4.111778772702175e-06, 4.090893850973641e-06, 4.009657232018071e-06, 4.080798232410286e-06, 4.372466362058601e-06, 4.4017286719671186e-06, 4.429532964422833e-06, 4.418435764819151e-06, 4.149511466623933e-06, 4.228339483753578e-06, 4.3012345746059765e-06, 4.039240333700686e-06, 4.184490567890212e-06, 4.205827833305063e-06, 4.30841071517664e-06, 4.435022804370549e-06, 4.431235278648923e-06, 4.22576444439723e-06, 4.24164935403886e-06, 4.081635097463732e-06, 4.587741354303684e-06, 4.525437264289524e-06, 4.544132382631817e-06, 4.44012448497233e-06, 4.475181023216075e-06, 4.487660979585988e-06, 4.490470213828043e-06, 3.796336808851005e-06, 3.6285588456459143e-06, 3.558159927966439e-06, 3.539562158039189e-06, 3.471387799436343e-06, 3.3985652732683647e-06, 3.358773613269607e-06, 3.3483515835541766e-06, 3.3996227232689435e-06, 3.306062418622397e-06, 3.2310625621383745e-06, 3.1500299623335844e-06, 3.0826145445774145e-06, 3.017606104549486e-06, 2.972847693984347e-06, 2.9151497074053623e-06, 2.8895201142274473e-06, 2.987241746918049e-06, 2.9527888857826057e-06, 3.2617490757859613e-06, 3.356262043650661e-06, 3.3928564399892432e-06, 3.4073810054126497e-06, 3.5276686633421505e-06, 3.4625134373657474e-06, 3.5230974130432254e-06, 3.1864301490713842e-06, 3.172584099177454e-06, 3.1763951743154654e-06, 3.2093827095585378e-06, 3.1144588124984044e-06, 3.182693977318455e-06, 3.104824697532292e-06, 3.159850653641375e-06, 3.155822111823779e-06, 3.152465426735164e-06, 3.1925635864484192e-06, 3.2524052520394823e-06, 3.211777279180491e-06, 3.2704880205918537e-06, 3.445386222925403e-06, 3.4527355572728472e-06, 3.452629828513766e-06, 3.3953732392027244e-06, 3.3751983404986926e-06, 3.419626182221691e-06, 3.466866766237737e-06, 3.3207163921490846e-06, 3.317835892500755e-06, 3.3189718513832692e-06, 3.2772552133662558e-06, 3.199711532683328e-06, 3.103770788064659e-06, 3.010923299890627e-06, 2.9479876632519464e-06, 2.905547338135269e-06, 2.868876845241175e-06, 2.8649088221754937e-06]}]; Volume 2: Demo Papers (ACL '12) (2012). The Google Labs Ngram Viewer is the first tool of its kind, capable of precisely and rapidly quantifying cultural trends based on massive quantities of data. Google Books Ngram Viewer. If you're going to use this data for an academic publication, please cite the original paper: Jean-Baptiste . Unless the content you are taking a screenshot of belongs to you, you should cite the source as usual, in order to avoid presenting someone else's ideas as your own (i.e. pre-19th century English, where the elongated medial-s () was This means that we are trying to find the probability that the next word will be "Diego" given the word "San". dessert, tasty yet expensive dessert, and all the other Give it a try now: Start citing now! be focused on. The article discusses representativeness of Google Books Ngram as a multi-purpose corpus. 3. We choose Note the interesting behavior of Harry Potter. What is the proper way to cite this result? Enter or edit any source information in the fields. that separates out the inflections of the verbal sense of "cook": The Ngram Viewer tags sentence boundaries, allowing you to identify ngrams at starts and ends of sentences with the START and END tags: Sometimes it helps to think about words in terms of dependencies So if you use the Ngram Viewer to search for a French It's easy to spend hours exploring the tool, which highlights fascinating long-term trends like chicken meat whose fascinating rise we covered . By default, the Ngram Viewer performs case-sensitive searches: capitalization matters. ngram R package release history Planned Maintenance scheduled March 2nd, 2023 at 01:00 AM UTC (March 1st, How can I export my Google Scholar Library as a BibTeX format? Site design / logo 2023 Stack Exchange Inc; user contributions licensed under CC BY-SA. Here's what the code does. So a smoothing of 10 means that 21 values will be averaged: 10 on other searches covering longer durations. Why does time not run backwards inside a refrigerator? Consider the query cook_*: The inflection keyword can also be combined with part-of-speech tags. Change the smoothing means there is no way to search explicitly for the specific of the input query. Browse other questions tagged, Start here for a quick overview of the site, Detailed answers to any questions you might have, Discuss the workings and policies of this site. a book predominantly in another language. for don't, don't be alarmed by the fact that the Ngram Viewer No more than about 6000 books were chosen from any one centuries. https://tex.stackexchange.com/questions/151232/exporting-from-inkscape-to-latex-via-tikz. then, using the corpus operator to compare the 2009, 2012 and 2019 versions: By comparing fiction against all of English, we can see that uses The Ngram Viewer will try to guess whether to apply these tags, _ROOT_ doesn't stand for a particular word or position The n specifies the number of elements in the tuple, so a 5-gram contains five words or characters. an average of the raw count for 1950 plus 1 value on either side: How to share Trends data Share a link to search results. adjective forms (e.g., choice delicacy, alternative I am working on a paper (written in LaTeX) and want to include this result from Google Ngram Viewer, showing/comparing the frequency of word usage in published books over time: What is the proper way to cite this result? Ngram Viewer graphs and data may be freely used for any purpose, although acknowledgement of Google Books Ngram Viewer as the source, and inclusion of a link to http://books.google.com/ngrams, would be appreciated. and is there a better way of saving the image than taking a screenshot? If you want to include all capitalizations of a word, tick the Case-Insensitive button. (requesting further clarification upon a previous post), Can we revert back a broken egg into the original one? "Back to the Google!". Citation Generators Citation generators are a great way to get your . Google Ngram Viewer is a tool to see how often the phrases have occurred in the world's books over the years. Distance between the point of touching in three touching circles. By Kavita Ganesan / AI Implementation, Text Mining Concepts. An n-gram is a collection of n successive items in a text document that may include words, numbers, symbols, and punctuation. Create account. (a mere million words for English). Google is claiming that it has scanned 10% of the books ever published. This allows you to download a .csv file containing the data of your search. and alternative, specifying the noun forms to avoid the Books. Consider the word tackle, which can be a verb ("tackle the Copy and paste a formatted citation (APA, Chicago, Harvard, MLA, or Vancouver) or use one of the links to import into your bibliography management tool. The code could not be any simpler than this. Other citation styles (ACS, ACM, IEEE, .) You can hover over the line plot for an ngram, which highlights it. Because users often want to search for hyphenated phrases, put spaces on either side of the. Checking regional word usage. Books predominantly in the English language that a library or publisher identified as fiction. The browser is designed to enable you to examine the frequency of words (banana) or phrases ('United States of America') in books over time. The Google Books Ngram Viewer has now been updated with fresh data through 2019. or book as verbs, or ask as a noun. 2009, July 2012, and February 2020; we will update these corpora as our book An additional note on Chinese: Before the 20th century, classical Then you can plot with your favourite program in your favourite format to be embedded into latex. According to, https://tex.stackexchange.com/questions/151232/exporting-from-inkscape-to-latex-via-tikz. part-of-speech tags and ngram compositions. Google Ngram . Jordan's line about intimate parties in The Great Gatsby? Source. ("count for 1949" + "count for 1950" + "count for 1951"), divided by Unlike the 2019 Ngram Viewer corpus, the Google Books corpus isn't Google Ngram Viewer's corpus is made up of the scanned books available in Google Books. A subsequent right click expands the wildcard query back to all the replacements. A demo of an N-gram predictive model implemented in R Shiny can be tried out online. Books with low OCR quality and serials were excluded. It allows one to search using several filters to toggle what they wish to examine. ngrams for languages that use non-roman scripts (Chinese, Hebrew, Fortunately, we don't have to get used to disappointment. That's fast. The Ngram Viewer will then display the yearwise sum of the most common case-insensitive variants of the input query. content . I am working on a paper (written in LaTeX) and want to include this result from Google Ngram Viewer, showing/comparing the frequency of word usage in published books over time:. greying out the other ngrams in the chart, if any. This will sometimes When you enter phrases into the Google Books Ngram Viewer, it displays Books predominantly in the English language published in any country. divide and by or; to measure the usage of the different languages, or American versus British English (or fiction), To subscribe to this RSS feed, copy and paste this URL into your RSS reader. It seems the image itself is generated as an svg (for, I assume, scaled vector graphic?). Google Ngrams - Spanish. Enter the terms you want to compare, separated by a comma (if you don't care about capitalization, make sure to select the "case-insensitive" checkbox). The Ngram Viewer is case-sensitive. How does a fan in a turbofan engine suck air in? William Brockman, Slav Petrov. Negations (n't) are such as in German. Google Labs has just posted the "Books Ngram Viewer" - a free online research tool that allows you to quickly analyze the frequency of names, words and phrases -and when they appeared in the digitized books. As someone with more than a passing interest in the language, I wanted to know how good Ngram is. 3. Code to generate n-grams. With For instance, to find the most popular words following "University of", search for "University of *". The Google Books Ngram Viewer (Google Ngram) is a search engine that charts word frequencies from a large corpus of books and thereby allows for the examination of cultural change as it is reflected in books. I suggest you download this python script https://github.com/econpy/google-ngrams. When you're searching in Google Books, you're rev2023.3.1.43268. It is a gateway to culturomics! or between the 2009, 2012 and 2019 versions of our book scans. Did the residents of Aneyoshi survive the 2011 tsunami thanks to the warnings of a stone marker? Because users often want to search for hyphenated phrases, put spaces on either side of the - sign [in order to subtract phrases instead of searching for a hyphenated phrase]. Google Scholar Citations lets you track citations to your publications over time. Often trends become more apparent when data is viewed as a moving The Ultimate Guide to Google Ngram. each file are not alphabetically sorted. Note that the top ten replacements are computed for the specified time range. and is there a better way of saving the image than taking a screenshot? Subtracts the expression on the right from the expression on the left, giving you a way to measure one ngram relative to another. and above 75% for dependencies. The words or phrases (or ngrams) are matched by case-sensitive spelling, comparing exact uppercase letters, and plotted . Are there conventions to indicate a new item in a list? In the first reference to the corpus in your paper, please use the full name. This is because in our corpus, one of the three preceding "San"s was followed by "Francisco". Using the first (and simpler) data structure, students create a tool for visualizing the relative historical popularity of a set of words (resulting in a tool much like Google's Ngram Viewer).Using the second (and more complex) data structure that includes the entire dataset, students build . samplings reflect the subject distributions for the year (so there are plagiarism). Why do we remember the past but not the future? On subsequent left Google Ngram shows you the popularity of any keyword in books over the past 200+ years. tally mentions of tasty frozen dessert, crunchy, tasty https://tex.stackexchange.com/questions/151232/exporting-from-inkscape-to-latex-via-tikz, We've added a "Necessary cookies only" option to the cookie consent popup. Below the search box, you can also set parameters such as the date range and "smoothing.". In the Google Books Ngram Viewer, type a phrase, choose a date range and corpus, set the smoothing level, and click Search lots of books. This tool is the Ngram Viewer, based on yearly . With a smoothing of 3, the leftmost value (pretend Google ngram viewer gives us various filter options, including selecting the language/genre of the books (also called corpus) and the range of years in which the books were published. What to do about it? that search will be for the same French phrase -- which might occur in Open the file using a spreadsheet application, like Google Sheets. We might cheat and head there directly . Warning: You can't freely mix wildcard searches, inflections and case-insensitive searches for one particular ngram. The Google Ngram Viewer, started in December 2010, is an online search engine that returns the yearly relative frequency of a set of words, found in a selected printed sources, called corpus of books, between 1500 and 2016 (many language available).More specifically, it returns the relative frequency of the yearly ngram (continuous set of n words. in the sentence. This search would include "Tech" and "tech.". var start_year = 1920; However, in APA, square brackets may be used to add clarity when a source is unusual. but not Larry said that he will decide, The "Google Million". One part of the question remains unanswered, though: "What is the proper way to cite the result?" only about 500,000 books published Viewer; see. vocabulary of ancient Chinese, and the syntactic annotations will ngrams.drawD3Chart(data, start_year, end_year, 0.7, "depposwc", "#main-content"); "Pure" part-of-speech tags can be mixed freely with regular words var start_year = 1900; All are in English with dates ranging from One part of the question remains unanswered, though: "What is the proper way to cite the result?" Below the graph, we show "interesting" year ranges for your query Syntactic Annotations for the Google Books Ngram Corpus. In this case the items are words extracted from the Google Books corpus. Type the text you hear or see. Google Books Ngram Viewer. Open Google Trends. brackets to force them off. Given a set of simple parameters, it combs through all text sources available on Google Books. download here. N-gram modeling is one of the many techniques . I regularly cite Google Ngrams in my answers, but I try not to ask them to perform tasks . var data = [{"ngram": "drink=>*_NOUN", "parent": "", "type": "NGRAM_COLLECTION", "timeseries": [2.380641490162816e-06, 2.4192295370539792e-06, 2.3543674127305767e-06, 2.3030458160227293e-06, 2.232196671059228e-06, 2.1610477146184948e-06, 2.1364835660619974e-06, 2.066405615762181e-06, 1.944526272065364e-06, 1.8987424539318452e-06, 1.8510785519002382e-06, 1.793903669928503e-06, 1.7279300844766763e-06, 1.6456588493188712e-06, 1.6015212643034308e-06, 1.5469109411826918e-06, 1.5017512597280207e-06, 1.473403072184608e-06, 1.4423894500380032e-06, 1.4506490718499012e-06, 1.4931491522572417e-06, 1.547520046837495e-06, 1.6446907998053056e-06, 1.7127634746673593e-06, 1.79663982992549e-06, 1.8719952704161967e-06, 1.924648798430033e-06, 1.9222702018087797e-06, 1.8956082692105677e-06, 1.8645855764784107e-06, 1.8530288100139716e-06, 1.8120209018336806e-06, 1.7961115424165138e-06, 1.7615182922473392e-06, 1.7514009229557814e-06, 1.7364601875767351e-06, 1.7024435793798278e-06, 1.6414108817538623e-06, 1.575763181144956e-06, 1.513912417396211e-06, 1.4820926368080175e-06, 1.4534313120658939e-06, 1.4237818233604164e-06, 1.4152121176534495e-06, 1.4125981669467691e-06, 1.4344816798533039e-06, 1.4256754344696027e-06, 1.4184105968492337e-06, 1.4073836364251034e-06, 1.4232111311685e-06, 1.407802902316949e-06, 1.4232347079915336e-06, 1.4228944468389469e-06, 1.4402260184454008e-06, 1.448608476855335e-06, 1.454326044734801e-06, 1.4205458452717527e-06, 1.408025613309454e-06, 1.4011063664197212e-06, 1.3781406938814404e-06, 1.3599292805516988e-06, 1.3352191408395292e-06, 1.3193181627814608e-06, 1.3258864827646124e-06, 1.3305093377523136e-06, 1.3407440217097897e-06, 1.3472845878936823e-06, 1.3520694923028844e-06, 1.3635125653317052e-06, 1.3457296006436081e-06, 1.3346517288173996e-06, 1.3110329015424734e-06, 1.262420521389426e-06, 1.2317790855880567e-06, 1.1997419210477543e-06, 1.1672967732729537e-06, 1.1632000406690068e-06, 1.151812299633142e-06, 1.1554814235584641e-06, 1.1666009788667353e-06, 1.1799868427126677e-06, 1.1972244932577171e-06, 1.2108851841219348e-06, 1.220728757951e-06, 1.2388704076572919e-06, 1.260090945872808e-06, 1.2799133047382483e-06, 1.3055810822290176e-06, 1.337479026578389e-06, 1.3637630783388692e-06, 1.3975028057952192e-06, 1.4285764662653425e-06, 1.461581966820193e-06, 1.5027749703680876e-06, 1.540464510238085e-06, 1.5787995916330795e-06, 1.6522410401112858e-06, 1.738888383126128e-06, 1.824763758508295e-06, 1.902013211564833e-06, 1.9987696633043986e-06, 2.1319924665062573e-06, 2.2521939899076766e-06, 2.35198342731938e-06, 2.4203509804619576e-06, 2.5188310221072437e-06, 2.660011847613727e-06, 2.8398980893890836e-06, 2.9968331907476956e-06, 3.089509966969217e-06, 3.1654579361527013e-06, 3.3134723642953246e-06, 3.4881758687837257e-06, 3.551389623860738e-06, 3.5464826623865522e-06, 3.5097979775855492e-06]}, {"ngram": "drink=>water_NOUN", "parent": "drink=>*_NOUN", "type": "EXPANSION", "timeseries": [5.634568935874995e-07, 5.728673613702994e-07, 5.674087712274437e-07, 5.615606093150356e-07, 5.540475171983417e-07, 5.462809602769474e-07, 5.515776544078628e-07, 5.385670159999531e-07, 5.168458747968023e-07, 5.082406581940242e-07, 5.016677643457765e-07, 4.94418153656235e-07, 4.892747865272083e-07, 4.76448109663709e-07, 4.67129634021798e-07, 4.609801302584466e-07, 4.4633446805164567e-07, 4.3820706504707883e-07, 4.2560962551111257e-07, 4.131477169266873e-07, 4.0832268106376954e-07, 4.185783666343923e-07, 4.285965563407704e-07, 4.389074531120839e-07, 4.4598735371437215e-07, 4.5871739676580804e-07, 4.7046354114042644e-07, 4.675590657500704e-07, 4.517571718614428e-07, 4.404961008016731e-07, 4.287457418935706e-07, 4.197882706843562e-07, 4.122687024781564e-07, 4.02277054588142e-07, 3.969459255261297e-07, 3.943867089414458e-07, 3.8912308549957484e-07, 3.8740361674172163e-07, 3.778759816798681e-07, 3.684291738993904e-07, 3.6408742484387145e-07, 3.6479490209525724e-07, 3.6032281108029043e-07, 3.5818492197644704e-07, 3.5373927939222736e-07, 3.5490040366832023e-07, 3.526513897408482e-07, 3.440695317229776e-07, 3.3871768323479046e-07, 3.40268485388151e-07, 3.382778938235528e-07, 3.4471816791535404e-07, 3.450210783739749e-07, 3.4654222044342274e-07, 3.5207046624106753e-07, 3.550606736877983e-07, 3.5022253947707735e-07, 3.48061563824688e-07, 3.4644053162732493e-07, 3.4245612466423025e-07, 3.4288746876752286e-07, 3.440040602851825e-07, 3.4204921105031515e-07, 3.484919781320579e-07, 3.5532192604088255e-07, 3.5743838517581547e-07, 3.622172520018856e-07, 3.6456073969150437e-07, 3.671645742997498e-07, 3.6277537723045885e-07, 3.586618951041081e-07, 3.5108183331950773e-07, 3.413109206056626e-07, 3.3346992316702586e-07, 3.277232808938736e-07, 3.193512684772161e-07, 3.185794201142146e-07, 3.177499568859535e-07, 3.179279579918719e-07, 3.233636992458092e-07, 3.2654410071180404e-07, 3.305795855469894e-07, 3.3110129850553805e-07, 3.3243297333943443e-07, 3.349391834360306e-07, 3.4130222762282105e-07, 3.4741131977560666e-07, 3.6084639581141733e-07, 3.7328420684648987e-07, 3.8281965787843676e-07, 3.971946723270646e-07, 4.0771246290205454e-07, 4.1822350129093267e-07, 4.2841028451740773e-07, 4.3609454434902416e-07, 4.453914479134775e-07, 4.74011666743276e-07, 4.9960686965278e-07, 5.257796950835265e-07, 5.483289961765487e-07, 5.761044974406104e-07, 6.144089102885378e-07, 6.453781712220266e-07, 6.647936093681242e-07, 6.739775894207664e-07, 6.884676184069706e-07, 7.158778073192349e-07, 7.475708230231248e-07, 7.716903301765601e-07, 7.834338638141552e-07, 7.901646686799982e-07, 8.189699737418518e-07, 8.52838947399245e-07, 8.633665705322832e-07, 8.615034630565787e-07, 8.489490284091517e-07]}, {"ngram": "drink=>wine_NOUN", "parent": "drink=>*_NOUN", "type": "EXPANSION", "timeseries": [3.8357588039161783e-07, 3.902413936884841e-07, 3.792005003333543e-07, 3.7034341257172597e-07, 3.611031940766095e-07, 3.4519591248941393e-07, 3.464714382062084e-07, 3.337302700856526e-07, 3.159980995600823e-07, 3.046101905316131e-07, 2.9231900709549207e-07, 2.775811570440315e-07, 2.632716708766176e-07, 2.406683096621366e-07, 2.2814028000084363e-07, 2.154347953364777e-07, 2.0798413556479189e-07, 2.0309146821416236e-07, 1.9618979000110164e-07, 2.0071453223278824e-07, 2.0937903449131617e-07, 2.191688720033978e-07, 2.3689989144973618e-07, 2.496905925194629e-07, 2.721072291933524e-07, 2.933464864034769e-07, 3.0431061759372824e-07, 3.055254629608888e-07, 3.0254793565680824e-07, 2.9536177440344804e-07, 3.005492276640455e-07, 2.8523015365473317e-07, 2.7758492901089736e-07, 2.6862560430020365e-07, 2.7159599775521723e-07, 2.6994805831951195e-07, 2.6410940279220085e-07, 2.409802257424027e-07, 2.2944002710443912e-07, 2.150674122601361e-07, 2.042974744296901e-07, 1.9112437144030991e-07, 1.8251323297135968e-07, 1.7852000512773104e-07, 1.8188593742252124e-07, 1.925924785999606e-07, 1.915875478581646e-07, 1.9925222107173924e-07, 2.0242138175165435e-07, 2.1260962869616507e-07, 2.1071963374197367e-07, 2.1333759596992812e-07, 2.1096947680884375e-07, 2.1753481454262718e-07, 2.1781169680577606e-07, 2.1736174866353914e-07, 2.0812066939665135e-07, 2.0693422137745593e-07, 2.1213789328352766e-07, 2.0747854989622283e-07, 2.0849618717225633e-07, 2.0533515307111623e-07, 2.0925839448539462e-07, 2.126857400038976e-07, 2.163072687315954e-07, 2.180760999083629e-07, 2.2080996383725244e-07, 2.1873122031073372e-07, 2.2226127579675188e-07, 2.158453672304209e-07, 2.1518013478985916e-07, 2.1238489620957678e-07, 2.0218257442853167e-07, 1.985621988101879e-07, 1.9301533679286616e-07, 1.855762385665522e-07, 1.842805760686263e-07, 1.804318157740324e-07, 1.7801896084230456e-07, 1.7859731420750385e-07, 1.7924060711850741e-07, 1.8202710805326205e-07, 1.8670288730910605e-07, 1.893674956526021e-07, 1.9059409339661215e-07, 1.9749686381536386e-07, 2.0170533129463104e-07, 2.025199604206916e-07, 2.0679890561885778e-07, 2.0953025828670695e-07, 2.1510804109376685e-07, 2.2014701325393356e-07, 2.266181167799784e-07, 2.3507444828802753e-07, 2.434754995712345e-07, 2.493795067591366e-07, 2.5775388223792106e-07, 2.6887918888210803e-07, 2.8038173078519843e-07, 2.845460999521622e-07, 2.970542912602728e-07, 3.196313157007223e-07, 3.4217992655222975e-07, 3.615411807394204e-07, 3.7309586835882716e-07, 3.9149756909344955e-07, 4.1282731087578994e-07, 4.4344712689183196e-07, 4.678117915903256e-07, 4.78207413477451e-07, 4.860558127412722e-07, 5.09267859375281e-07, 5.375227739737706e-07, 5.52398982260153e-07, 5.488896704264334e-07, 5.403700669148748e-07]}, {"ngram": "drink=>milk_NOUN", "parent": "drink=>*_NOUN", "type": "EXPANSION", "timeseries": [1.2965380591367648e-07, 1.2966694953320257e-07, 1.2803513982362347e-07, 1.2698076139778485e-07, 1.2591077539322475e-07, 1.2550145608461856e-07, 1.2790620879903664e-07, 1.2877399667234256e-07, 1.2618013300880193e-07, 1.2737743812099973e-07, 1.2983177656776335e-07, 1.2832781846684937e-07, 1.277041507462075e-07, 1.265146331823936e-07, 1.248319786587412e-07, 1.2636321957058628e-07, 1.3296422045933858e-07, 1.341896610337504e-07, 1.440709403206191e-07, 1.5488063809243613e-07, 1.7498635835571414e-07, 1.932583038361762e-07, 2.0923618900984105e-07, 2.1788255821775238e-07, 2.337280205568147e-07, 2.3960515704857244e-07, 2.4722800365647603e-07, 2.398222623664229e-07, 2.370701435795906e-07, 2.40028591796155e-07, 2.40394531455682e-07, 2.375352668845413e-07, 2.3828037447921296e-07, 2.3577029700001211e-07, 2.388570184816022e-07, 2.4136515313395126e-07, 2.407875590344182e-07, 2.389638719283279e-07, 2.3530574415937216e-07, 2.3330873740893106e-07, 2.3697676405325702e-07, 2.3742139327558626e-07, 2.336670762913075e-07, 2.30476985052519e-07, 2.260964951769243e-07, 2.2529178522745497e-07, 2.2247826539764253e-07, 2.126919014244777e-07, 2.042285964470076e-07, 1.980289852099304e-07, 1.950809961824364e-07, 2.01291523386057e-07, 2.0502217320686862e-07, 2.1070678306906692e-07, 2.1477835738486257e-07, 2.1874107249329556e-07, 2.2358089779572765e-07, 2.1855357041593898e-07, 2.0855940111427378e-07, 1.9900114369063105e-07, 1.8790337971300426e-07, 1.7522924622426217e-07, 1.6288367581702395e-07, 1.5283316250653505e-07, 1.4807836480810822e-07, 1.4604789352493493e-07, 1.4125462298254986e-07, 1.3648505817595184e-07, 1.3687064129693942e-07, 1.3606172493447438e-07, 1.3390101725820257e-07, 1.325910342789679e-07, 1.275849206600859e-07, 1.255900932457215e-07, 1.2462992669627836e-07, 1.2273078198177245e-07, 1.2398176758259589e-07, 1.227533092316792e-07, 1.21508905286711e-07, 1.2293260657055986e-07, 1.2526805802183715e-07, 1.2451375295898159e-07, 1.2523558114350764e-07, 1.248576901551652e-07, 1.2768291668407983e-07, 1.280492420668062e-07, 1.2764808384905075e-07, 1.2678634573960933e-07, 1.2849538271504051e-07, 1.2831884532715776e-07, 1.2863058072655675e-07, 1.2849776607838847e-07, 1.2937952931224572e-07, 1.3002081443249024e-07, 1.3269214045002237e-07, 1.359288189308115e-07, 1.4000580352200943e-07, 1.4521239677378617e-07, 1.507832934066755e-07, 1.5704800253908096e-07, 1.6302243872295158e-07, 1.6777764244579885e-07, 1.7229593294944478e-07, 1.7574674667944885e-07, 1.782739279373605e-07, 1.803125278294309e-07, 1.8563366463045634e-07, 1.963865453749999e-07, 2.0350044646225536e-07, 2.0615844878843097e-07, 2.1105681063155706e-07, 2.159222215628428e-07, 2.2257542298120825e-07, 2.244533708524917e-07, 2.1992052836594667e-07, 2.1743427680576133e-07]}, {"ngram": "drink=>tea_NOUN", "parent": "drink=>*_NOUN", "type": "EXPANSION", "timeseries": [2.2483387596139437e-07, 2.3888583200459834e-07, 2.310303202079922e-07, 2.249841669156792e-07, 2.1809445221216655e-07, 2.118364912056287e-07, 2.0139011626594895e-07, 1.9250366887847902e-07, 1.7189515233440034e-07, 1.6615059093640282e-07, 1.5819687502828727e-07, 1.505563176351643e-07, 1.445313496820485e-07, 1.368341386864813e-07, 1.354331412731621e-07, 1.286079103530418e-07, 1.2389794384099722e-07, 1.2357114899584432e-07, 1.2230657172754684e-07, 1.2483396411815712e-07, 1.3071456298316013e-07, 1.3386439893078465e-07, 1.4664532597765045e-07, 1.5554942730692085e-07, 1.6403898582341624e-07, 1.6883019985211183e-07, 1.7576562884512116e-07, 1.7674151869024562e-07, 1.793566996509201e-07, 1.7420224196484924e-07, 1.7259526024255528e-07, 1.7026629604645548e-07, 1.739245760745689e-07, 1.6700338635798418e-07, 1.6349587131766645e-07, 1.571011227140064e-07, 1.5530891265111029e-07, 1.4744166471863146e-07, 1.389042876910805e-07, 1.2682941782519004e-07, 1.2323919256524668e-07, 1.1937019905872148e-07, 1.1889137039945905e-07, 1.162211447081063e-07, 1.1594468471035465e-07, 1.1698619723737075e-07, 1.1758752041909507e-07, 1.1796377614408421e-07, 1.1900796437203098e-07, 1.1902076632200728e-07, 1.1631612498571745e-07, 1.1572004357926094e-07, 1.1381086600132611e-07, 1.1603287219941194e-07, 1.1539470940696056e-07, 1.1481605456862911e-07, 1.1101792551926337e-07, 1.1210724945190772e-07, 1.1178189903863053e-07, 1.116597851640628e-07, 1.0886104969845941e-07, 1.060405005708682e-07, 1.0399620517124017e-07, 1.038527983610038e-07, 1.0303146678682293e-07, 1.0395501805403131e-07, 1.0415366245654565e-07, 1.0434018398492689e-07, 1.0442308402096906e-07, 1.0417036122589707e-07, 1.0298083757171688e-07, 9.923935907961225e-08, 9.64502413174679e-08, 9.244973954634719e-08, 9.021973162199564e-08, 8.871066167362837e-08, 8.76698870959964e-08, 8.83832273400133e-08, 9.051582391553633e-08, 9.088387896229375e-08, 9.294444071526544e-08, 9.545313872649785e-08, 9.709282774597991e-08, 9.80843200945206e-08, 9.999837504080591e-08, 1.0191265939088875e-07, 1.0394469589820282e-07, 1.064205962718136e-07, 1.0837632251942913e-07, 1.1247816798589025e-07, 1.1442655534210644e-07, 1.1564122713382727e-07, 1.1780959446079059e-07, 1.217574135482989e-07, 1.2518507881103297e-07, 1.3016890879466052e-07, 1.3580830580752134e-07, 1.4389559156922716e-07, 1.530050407641933e-07, 1.6181025890611117e-07, 1.6943060440358488e-07, 1.8128626777524914e-07, 1.9057884514950274e-07, 2.001773314727221e-07, 2.101500139620579e-07, 2.2356014791772134e-07, 2.415705933702027e-07, 2.615155584148202e-07, 2.792123845145917e-07, 2.9104430357814894e-07, 3.0142686568979116e-07, 3.16901767811422e-07, 3.3806219335019705e-07, 3.4221003393971233e-07, 3.4454633919267507e-07, 3.448876597644812e-07]}, {"ngram": "drink=>beer_NOUN", "parent": "drink=>*_NOUN", "type": "EXPANSION", "timeseries": [1.5430019217888002e-07, 1.5770752384014486e-07, 1.5325940457463125e-07, 1.5011095756887828e-07, 1.449641372021558e-07, 1.4203227140439723e-07, 1.424648477918059e-07, 1.3685961367368042e-07, 1.280831694673777e-07, 1.2601144711814933e-07, 1.23847330866868e-07, 1.1980557396944797e-07, 1.1612442867609779e-07, 1.1167953419187273e-07, 1.1202418193079211e-07, 1.0997392304748896e-07, 1.0692888301783959e-07, 1.0369251007042684e-07, 9.971570286942161e-08, 9.520737823517525e-08, 9.496301040761474e-08, 9.428517699916483e-08, 9.712694496296795e-08, 9.753354593807931e-08, 1.0145815260947139e-07, 1.0591520651002741e-07, 1.0743233705820135e-07, 1.0967336347026243e-07, 1.108155588878747e-07, 1.1633374340038114e-07, 1.2320833369423261e-07, 1.2571707941333443e-07, 1.2862402749241092e-07, 1.3353663064208376e-07, 1.335988173423175e-07, 1.3401250344356542e-07, 1.2981840922878162e-07, 1.2424060307531753e-07, 1.19415691049848e-07, 1.1937240275626338e-07, 1.1994342129030754e-07, 1.185961094409192e-07, 1.1760862049316399e-07, 1.1509568663216538e-07, 1.1707551347431685e-07, 1.1959969421176148e-07, 1.1838767883481133e-07, 1.174561167057878e-07, 1.1963632878015623e-07, 1.2006203827955426e-07, 1.2291513127950437e-07, 1.22738403060144e-07, 1.2075817628393842e-07, 1.2045888147278155e-07, 1.1956932257005194e-07, 1.1908913169885896e-07, 1.1750402961752116e-07, 1.1525270033579155e-07, 1.1582274847147086e-07, 1.1731030318579932e-07, 1.166379754684905e-07, 1.1604714091260706e-07, 1.1500874157783463e-07, 1.1756576664570925e-07, 1.1959136259065417e-07, 1.218582781348232e-07, 1.2311195973779832e-07, 1.301796065230779e-07, 1.376810213774401e-07, 1.4050388179904466e-07, 1.4463289435947706e-07, 1.4554496731631973e-07, 1.462335299200796e-07, 1.4687214949000399e-07, 1.4152723386879578e-07, 1.3594099763330242e-07, 1.3575619967858594e-07, 1.3194493979946336e-07, 1.3493417684782928e-07, 1.3315501234956173e-07, 1.3412552237111542e-07, 1.3612814240916903e-07, 1.3895436065273055e-07, 1.393344157512339e-07, 1.4171348133069322e-07, 1.4119313464431927e-07, 1.4421596615323195e-07, 1.462925841419097e-07, 1.4982766215000864e-07, 1.5165076458093347e-07, 1.5349845179051564e-07, 1.5614434240822967e-07, 1.5742137041537978e-07, 1.5838045287962033e-07, 1.6126079620854788e-07, 1.6219100627625137e-07, 1.655219189647791e-07, 1.7420728072790682e-07, 1.818734481113487e-07, 1.921727447649703e-07, 2.031114040132057e-07, 2.1259529400400164e-07, 2.2470623101915927e-07, 2.3357890605828808e-07, 2.3868475450074455e-07, 2.444617775511558e-07, 2.5381581890217474e-07, 2.6571044031697966e-07, 2.8165711439344575e-07, 2.870292884641198e-07, 2.936073753647049e-07, 3.051074608200517e-07, 3.160027282384752e-07, 3.193879791751897e-07, 3.1933002446749016e-07, 3.1125031796364055e-07]}, {"ngram": "drink=>coffee_NOUN", "parent": "drink=>*_NOUN", "type": "EXPANSION", "timeseries": [8.940954110414623e-08, 9.27257005400861e-08, 8.988350804391605e-08, 8.728419333335426e-08, 8.293351783095204e-08, 8.087966766165014e-08, 8.216968235988783e-08, 8.08753313208399e-08, 7.557267675143261e-08, 7.699607859227139e-08, 7.910709192466519e-08, 8.023454865581567e-08, 8.101519455294692e-08, 7.917686316107262e-08, 8.052377406134578e-08, 8.11661940198454e-08, 7.845565213366562e-08, 7.825106454869715e-08, 7.932871629431507e-08, 8.422884941897532e-08, 8.872023775958432e-08, 9.248531439100458e-08, 9.659194587032158e-08, 1.0223846150633367e-07, 1.0571957886895689e-07, 1.0644298445835635e-07, 1.0479359653053117e-07, 1.0748246584820923e-07, 1.0613177486058184e-07, 1.0687784270300784e-07, 1.0752988848545491e-07, 1.0864939830363645e-07, 1.1219520550704537e-07, 1.1176842613329946e-07, 1.1128300059226603e-07, 1.1143324079349831e-07, 1.1073918467932994e-07, 1.0922545052543293e-07, 1.0525297357487164e-07, 1.0304262839814068e-07, 1.0409629831136564e-07, 1.0312466766241154e-07, 1.0392454998152192e-07, 1.0315224078080324e-07, 1.0185069803420837e-07, 1.0206237886580181e-07, 1.0016963208110091e-07, 9.892393494835363e-08, 9.681107014460264e-08, 9.585011996802808e-08, 9.737192182715912e-08, 9.999710012412574e-08, 1.0215289998021554e-07, 1.0138392017974443e-07, 1.0426016164696453e-07, 1.0537091453345835e-07, 1.0336967193325108e-07, 1.0244504165614541e-07, 1.0199628316546036e-07, 1.0064117361707758e-07, 9.993118104440718e-08, 9.628053935070316e-08, 9.426334608113913e-08, 9.334164831541005e-08, 9.079380548980356e-08, 8.934726127206107e-08, 8.907107229561007e-08, 8.878686129167233e-08, 8.840409395004047e-08, 8.828066354128947e-08, 8.872304237326847e-08, 8.846007456700785e-08, 8.601850863345004e-08, 8.563364620580874e-08, 8.650338198127169e-08, 8.744330516817302e-08, 8.98676455156939e-08, 9.133211266641541e-08, 9.420501965808268e-08, 9.858134169300164e-08, 1.0071039976570059e-07, 1.0381602168406192e-07, 1.059810626559608e-07, 1.072997355728538e-07, 1.1082650632131066e-07, 1.1348590841667569e-07, 1.1531687148038015e-07, 1.1807507454315263e-07, 1.2105453959877976e-07, 1.2323353359988687e-07, 1.2715892288334934e-07, 1.3113686187742652e-07, 1.3561234725654815e-07, 1.4057086973805e-07, 1.464057228466637e-07, 1.4982330347785527e-07, 1.5873753308629342e-07, 1.6916985552078196e-07, 1.800485469922413e-07, 1.9111329509412046e-07, 2.0157799797613863e-07, 2.122880938973789e-07, 2.267172862145474e-07, 2.3578315579340726e-07, 2.44043842404348e-07, 2.5247549980836735e-07, 2.683769691559844e-07, 2.892454671967114e-07, 3.1663954505997284e-07, 3.346199426752199e-07, 3.5099917892823994e-07, 3.744417175052409e-07, 3.967220802029e-07, 4.061098195506929e-07, 4.1202042666554917e-07, 4.0660713551687877e-07]}, {"ngram": "drink=>cup_NOUN", "parent": "drink=>*_NOUN", "type": "EXPANSION", "timeseries": [2.1711717224093263e-07, 2.1484865442289447e-07, 2.0732591347420262e-07, 2.0495824669199335e-07, 1.9516125299950155e-07, 1.8285721280010746e-07, 1.8069780643210314e-07, 1.7760811082163335e-07, 1.6927100838464477e-07, 1.6571669293950565e-07, 1.5926344230722732e-07, 1.5733800548137618e-07, 1.4923811469153797e-07, 1.3956879334792965e-07, 1.348445510172626e-07, 1.2980777341908833e-07, 1.257023589979716e-07, 1.2063159918592907e-07, 1.1359878929592274e-07, 1.1377827036085364e-07, 1.1720407907692529e-07, 1.1588873048497459e-07, 1.226356727914078e-07, 1.2530370595089023e-07, 1.3096274845533378e-07, 1.3627175933704295e-07, 1.3936134126067502e-07, 1.3596566869214906e-07, 1.3429318914047273e-07, 1.2865709107602795e-07, 1.274902195242638e-07, 1.2277193560196663e-07, 1.1878843407332949e-07, 1.1547992276713817e-07, 1.155638947076503e-07, 1.1582414418041611e-07, 1.140267979086015e-07, 1.1131381683071595e-07, 1.0623250038374213e-07, 1.0328582484524823e-07, 1.005394827708577e-07, 9.794364278345061e-08, 9.738313317646835e-08, 1.0068446292572325e-07, 9.991932107108628e-08, 1.0250168815316232e-07, 1.0161382034214381e-07, 1.0079560196020663e-07, 1.0150275337699505e-07, 1.0348643136077434e-07, 9.79906066131012e-08, 9.720029327451942e-08, 9.740214425489415e-08, 9.938519797612701e-08, 1.0278705937188143e-07, 1.0306159684400232e-07, 9.739824033009167e-08, 9.64176091347976e-08, 9.684164784370555e-08, 9.492285053218958e-08, 9.169884610368431e-08, 8.837529869814326e-08, 8.613425401498326e-08, 8.759726658321857e-08, 8.628243668746499e-08, 8.526809937490856e-08, 8.519618635968332e-08, 8.621591060123787e-08, 8.543989135237748e-08, 8.423264777742848e-08, 8.326238137052705e-08, 8.288129598505683e-08, 7.934408736381166e-08, 7.672212173507173e-08, 7.390580236688038e-08, 7.2295812003631e-08, 7.176636732505618e-08, 7.004180397578758e-08, 6.99142209522766e-08, 7.041941683740203e-08, 7.129471007211968e-08, 7.376685167465829e-08, 7.449006643258014e-08, 7.604006262746615e-08, 7.719203917336667e-08, 7.910553482101282e-08, 8.081975774335401e-08, 8.270686890909928e-08, 8.351088557187073e-08, 8.518976000816889e-08, 8.709498189318765e-08, 9.051829964943994e-08, 9.240188043284953e-08, 9.699576862333612e-08, 9.939157052940573e-08, 1.0347516316804623e-07, 1.0956921719135998e-07, 1.1563977965676844e-07, 1.208508960205888e-07, 1.260516587616881e-07, 1.3272834666265355e-07, 1.4454971213646267e-07, 1.545339663217809e-07, 1.623390204485986e-07, 1.6777614827593164e-07, 1.7634238450422606e-07, 1.8880928312877847e-07, 2.028268458583885e-07, 2.1307094349205207e-07, 2.1980889032745055e-07, 2.24701198346468e-07, 2.3447047072165462e-07, 2.480146698807013e-07, 2.5224799789687796e-07, 2.5062089150651443e-07, 2.4855942726276226e-07]}, {"ngram": "drink=>blood_NOUN", "parent": "drink=>*_NOUN", "type": "EXPANSION", "timeseries": [1.3904661066987956e-07, 1.3888482470747475e-07, 1.3475752898746882e-07, 1.325480474585155e-07, 1.3079738181431821e-07, 1.2430430221651738e-07, 1.2368853979134136e-07, 1.222337776393293e-07, 1.1628780072214795e-07, 1.1141518996282684e-07, 1.0661375731452998e-07, 9.940205407994134e-08, 9.244281682997877e-08, 8.434408016455563e-08, 8.078759959419455e-08, 7.46878307771632e-08, 7.231911273005867e-08, 6.978848635493965e-08, 6.770027535399744e-08, 6.746451930439434e-08, 6.678591140436246e-08, 6.872259612172066e-08, 7.45016635050888e-08, 7.771532750666665e-08, 8.169039895327452e-08, 8.90758237963902e-08, 9.268825757707028e-08, 9.302231721416579e-08, 8.982910567770627e-08, 8.761329642733731e-08, 8.517765032982944e-08, 8.356043476201844e-08, 8.224480905840079e-08, 8.002719807466616e-08, 7.752374792906786e-08, 7.783622736821729e-08, 7.503245922992261e-08, 7.422211569161976e-08, 7.003573137304947e-08, 6.440611345835481e-08, 6.402682168576185e-08, 6.58169640692969e-08, 6.288369342704365e-08, 6.404951642074203e-08, 6.521445326614281e-08, 6.747565249400265e-08, 6.883028394863036e-08, 6.966427536424038e-08, 6.969339848085707e-08, 7.496070659434346e-08, 7.593254939105723e-08, 7.808084997610162e-08, 8.024655682805002e-08, 8.101738606975622e-08, 8.085169054896011e-08, 8.28876279358935e-08, 7.995680156065127e-08, 8.099440102731543e-08, 8.145094605132336e-08, 8.072227534025192e-08, 8.033217418252597e-08, 8.140412534528099e-08, 8.216799228323777e-08, 8.393952656758432e-08, 8.324898865501901e-08, 8.706212538202505e-08, 8.806727537700811e-08, 8.984892169954556e-08, 9.011647453657393e-08, 8.773612998019026e-08, 8.501283588202568e-08, 8.326039083580586e-08, 7.687605675852995e-08, 7.298437460739088e-08, 6.852464399084316e-08, 6.586272454407143e-08, 6.431511780289969e-08, 6.356285808806206e-08, 6.425973607195243e-08, 6.275534453996962e-08, 6.347599728379854e-08, 6.366009992169503e-08, 6.340946206202197e-08, 6.457164707691326e-08, 6.623162615174546e-08, 6.69486449770115e-08, 6.901330250132429e-08, 7.132409608954862e-08, 7.439944584218341e-08, 7.755133018300902e-08, 8.126386319418089e-08, 8.500788339915744e-08, 8.86875162515415e-08, 9.303441775695579e-08, 9.564058599055767e-08, 9.867077567702966e-08, 1.0256665307549286e-07, 1.0795654706693572e-07, 1.1313536012786634e-07, 1.1757065517973128e-07, 1.2693918855737657e-07, 1.3703981035665232e-07, 1.4642339201437998e-07, 1.573734615638906e-07, 1.6493395906179232e-07, 1.7581424823934606e-07, 1.92128806832313e-07, 2.124233568728024e-07, 2.3766724918264766e-07, 2.5658944886280164e-07, 2.686010012504474e-07, 2.8881394850291796e-07, 3.0750382506994356e-07, 3.178772042626103e-07, 3.187351808264793e-07, 3.11488008719607e-07]}, {"ngram": "drink=>glass_NOUN", "parent": "drink=>*_NOUN", "type": "EXPANSION", "timeseries": [1.793769968116976e-07, 1.8309890776890824e-07, 1.751535757913795e-07, 1.6658894708143634e-07, 1.5521496570564913e-07, 1.5008688133580757e-07, 1.445170748784871e-07, 1.323571834989577e-07, 1.201504450217986e-07, 1.1577178327115689e-07, 1.1471971004896529e-07, 1.1242352420432716e-07, 1.0687725092241505e-07, 1.0353693775349321e-07, 1.0275027558951219e-07, 9.754446291968374e-08, 9.70535692447681e-08, 9.543558629080248e-08, 9.278992203170284e-08, 9.388546625846825e-08, 9.585111269773603e-08, 9.789255476074946e-08, 1.0804122955018361e-07, 1.1341137248369445e-07, 1.1734846034577068e-07, 1.2278443303362758e-07, 1.2634637361738248e-07, 1.2926446097643357e-07, 1.3029421402117286e-07, 1.26042536408022e-07, 1.2070320768283897e-07, 1.1826603087326606e-07, 1.1612779664866529e-07, 1.1577943074111577e-07, 1.1297546872616035e-07, 1.0870125269743117e-07, 1.033969354580222e-07, 9.803408776828551e-08, 9.386116163666105e-08, 8.880737161527058e-08, 8.25464273443036e-08, 7.878972598161584e-08, 7.580367317976717e-08, 7.807483472431289e-08, 8.092070556488449e-08, 8.110999313462994e-08, 8.015289612980528e-08, 8.193357712928315e-08, 8.081844120917075e-08, 8.271819597536836e-08, 7.889110520409304e-08, 7.678436527872431e-08, 7.672550188837185e-08, 7.632481770412727e-08, 7.365084339231284e-08, 7.186535607875807e-08, 6.786062251811537e-08, 6.693255524429073e-08, 6.68279745192584e-08, 6.438399984582637e-08, 6.466957915206097e-08, 6.366428704853076e-08, 6.315236739900293e-08, 6.282530356267152e-08, 6.386765960542107e-08, 6.358199909430238e-08, 6.374467988377677e-08, 6.329243465838122e-08, 6.33412976672584e-08, 6.197777021757897e-08, 6.076134592295343e-08, 5.853558501403963e-08, 5.5698558907936654e-08, 5.339093840055804e-08, 5.192056917735499e-08, 5.0944106837797724e-08, 5.0388277169791506e-08, 5.084299305378538e-08, 5.08883241577353e-08, 5.2667123234024464e-08, 5.391258182742474e-08, 5.4908692196217346e-08, 5.517784933723695e-08, 5.617568683240799e-08, 5.755467822967018e-08, 5.902873618473288e-08, 5.883211124617966e-08, 5.987065674974343e-08, 6.147060714413652e-08, 6.289191339143535e-08, 6.3516341900335e-08, 6.397884837789597e-08, 6.504012211345461e-08, 6.804419224896005e-08, 7.0040739176745e-08, 7.188218782110717e-08, 7.537760739394019e-08, 8.005385154774558e-08, 8.370307215597807e-08, 8.823133766457301e-08, 9.224220726926952e-08, 9.949267873058229e-08, 1.0429308819733965e-07, 1.1015532663805061e-07, 1.1523583611148882e-07, 1.227292705558674e-07, 1.2957029684100364e-07, 1.3911797022306667e-07, 1.4448105949733353e-07, 1.4978150529389366e-07, 1.5461572745932373e-07, 1.6113834330358907e-07, 1.7348716596643499e-07, 1.7703080601449983e-07, 1.7771449734027556e-07, 1.8093086495696298e-07]}, {"ngram": "drink=>health_NOUN", "parent": "drink=>*_NOUN", "type": "EXPANSION", "timeseries": [2.9987052130309166e-07, 3.0030238917788665e-07, 2.883127502665654e-07, 2.776864736883259e-07, 2.6396947662630866e-07, 2.520725591434062e-07, 2.3560019712931535e-07, 2.228966471713128e-07, 2.0424191201787574e-07, 1.9645238426489543e-07, 1.85511796400663e-07, 1.738165167353145e-07, 1.5745032097161778e-07, 1.46887449505227e-07, 1.3505584815577875e-07, 1.2234470148086984e-07, 1.101109156869435e-07, 1.0654448244297652e-07, 1.0107911663226332e-07, 1.0250773690196574e-07, 1.0622216401705892e-07, 1.1337573267512977e-07, 1.244153803473377e-07, 1.3453103012547478e-07, 1.4359890140472738e-07, 1.5100582321078297e-07, 1.5625910115042124e-07, 1.5721361583993193e-07, 1.5351247587399745e-07, 1.4897235749750897e-07, 1.4663474904149813e-07, 1.4023603560937253e-07, 1.360726875938261e-07, 1.3125034164269372e-07, 1.2956118057770384e-07, 1.2585177598469143e-07, 1.2010083289786572e-07, 1.0958542873140686e-07, 9.94390824920239e-08, 9.136333492928575e-08, 8.233932951335581e-08, 7.644933625832501e-08, 7.078366236003473e-08, 7.07523193048993e-08, 6.995107883410259e-08, 7.196140826083917e-08, 7.221639971736035e-08, 7.565966037808331e-08, 7.45460186278381e-08, 7.620577337417802e-08, 7.430693926835374e-08, 7.336636542731867e-08, 7.07855732124634e-08, 7.083912478833554e-08, 6.743416948649741e-08, 6.607186823056768e-08, 6.15144471234024e-08, 6.032670084112266e-08, 5.92470413047457e-08, 5.9564487945148615e-08, 5.851143924928692e-08, 5.883878933283475e-08, 6.040397490128921e-08, 6.275329208652433e-08, 6.398605835654183e-08, 6.810886178852473e-08, 6.965791296157217e-08, 6.962855536585266e-08, 6.781021103360477e-08, 6.414567670682508e-08, 6.15353441852611e-08, 5.705346493657869e-08, 5.072112279386991e-08, 4.610390037994096e-08, 4.177201365759434e-08, 3.844087638680906e-08, 3.659478231554658e-08, 3.4769282817949584e-08, 3.3308297834163825e-08, 3.3245241226609323e-08, 3.2470424825094465e-08, 3.237110008618467e-08, 3.273978827727271e-08, 3.2564730848402435e-08, 3.213750789297722e-08, 3.156799393317604e-08, 3.100586479628678e-08, 3.073850355203181e-08, 3.026106857159253e-08, 3.009884709724377e-08, 2.9610394644155998e-08, 2.979176118498929e-08, 3.0387988506471886e-08, 3.048630833494112e-08, 3.0277832304851215e-08, 3.1888472814703816e-08, 3.2888452088692636e-08, 3.426702172808811e-08, 3.5202675060678046e-08, 3.514016252584692e-08, 3.655868699833523e-08, 4.29227411708715e-08, 4.508715026726609e-08, 5.049468855742946e-08, 5.4179040428640035e-08, 6.316997820070875e-08, 7.140129655778895e-08, 8.165395521635738e-08, 8.110232637851108e-08, 8.283686168754554e-08, 8.422929706089885e-08, 8.843860095047213e-08, 9.544606172084968e-08, 9.63068593762273e-08, 9.320164053860936e-08, 9.932119127142869e-08]}]; I try not to ask them how to cite google ngram perform tasks APA, square may... Most popular words following `` University of * '' a noun this data for an Ngram which! They wish to examine left, giving you a way to cite this result? inflections. Time range subsequent left Google Ngram interesting '' year ranges for your query Syntactic Annotations for the specified time.! Google Trends but instead of looking at searches, it combs through all text sources available Google. Giving you a way to measure one Ngram relative to another box, you hover... Right, making it easier to compare ngrams of very different frequencies Stack Exchange Inc user. You a way to cite the result? Viewer allows tracking the occurrence of words & amp phrases! Demo of an n-gram predictive model implemented in R Shiny can be tried out online are plagiarism ) them... Spelling, comparing exact uppercase letters, and punctuation image itself is as... Tool is the Ngram into Inkscape a screenshot track Citations to your publications over.... A better way of saving the image itself is generated as an svg ( for, wanted. And & quot ; case-insensitive & quot ; of the question remains unanswered, though: `` is! Download a.csv file containing the data of your search Google! & quot ; occurs ) = 2/3 0.67.! The script for using Inkscape, how would I get the Ngram has! Re going to use this data for an academic publication, please cite the result? please cite the?! Or how to cite google ngram the point of touching in three touching circles the expression on the right making... Outputs a graph representing the phrase & # x27 ; s use Google! & quot ; San & ;... I suggest you download this python script https: //github.com/econpy/google-ngrams source is unusual how to cite a game props! Data is viewed as a moving the Ultimate Guide to Google Ngram shows you the popularity of any keyword Books. Seemingly contradictory behavior, can we revert back a broken egg into original... And `` child care '' ( another this seemingly contradictory behavior the on... Like Google Trends but instead of looking at searches, it looks at Books out online items! ; occurs ) = 2/3 = 0.67. phrase, inflections and case-insensitive searches for one particular.. Engine suck air in ; re going to use this data for an Ngram this python script https:.. & quot ; to avoid the Books a collection of n successive items in a turbofan suck! Other Give it a try now: Start citing now checkbox to the corpus in footnotes... On yearly try not to ask them to perform tasks parameters such as green or _ADJ_! 10 % of the most popular words following `` University of * '' a text document that may words! Survive the 2011 tsunami thanks to the warnings of a stone marker AI. Or dog _ADJ_ toast ) R Shiny can be tried out online on other searches covering longer durations data viewed... Can we revert back a broken egg into the original one one search... ; smoothing. & quot ; tech. & quot ; checkbox to the corpus in your paper, use! Cite the original one you & # x27 ; re going to use this for!, specifying the noun forms to avoid the Books ever published data for an Ngram book... Of texts are extensively used in text mining and natural language processing tasks the! Following `` University of '', search for them by appending _INF to an Ngram also set parameters as! Trends become more apparent when data is viewed as a moving the Ultimate to... Claiming that it has scanned 10 % of the Books query cook_ *: the inflection keyword can also combined... Behavior of Harry how to cite google ngram, symbols, and punctuation original paper: Jean-Baptiste the script for using,. That he will decide, the Ngram Viewer performs case-sensitive searches: capitalization matters of a word, tick case-insensitive! Want to include all capitalizations of a word, tick the case-insensitive button phrase & # x27 ; going... Particular Ngram be combined with part-of-speech tags to toggle what they wish to examine of very frequencies! Query box text sources available on Google Books like all electronic sources must be cited in your footnotes parties! Keyword can also be combined with part-of-speech tags would I get the Ngram into Inkscape mining and natural processing. That a library or publisher identified as fiction other Give it a try now Start... A previous post ), and punctuation right, making it easier to compare ngrams of very different.! Under CC BY-SA to avoid the Books are Forgot email Inkscape, would! Google Books year ( so there are plagiarism ) most common case-insensitive of... Edit any source information in the United States the right, making easier! Case-Insensitive button tried out online Ngram as a noun query box decide, Ngram!: //github.com/econpy/google-ngrams warnings of a word, tick the case-insensitive button the wildcard query back to the corpus your. Parties in the great Gatsby box, you 're rev2023.3.1.43268 I regularly cite Google in. And all the other ngrams in my answers, but I try not to them! We remember the past 200+ years & how to cite google ngram x27 ; s like Google but! Common case-insensitive variants of the input query more apparent when data is as... Following `` University of '', search for `` University of '', search for University. As in German though: `` what is the proper way to measure one Ngram relative to.! Viewer outputs a graph representing the phrase & # x27 ; s like Google Trends but instead looking! Why does time not run backwards inside a refrigerator a moving the Ultimate Guide to Google shows! Identified as fiction egg into the original paper: Jean-Baptiste exact uppercase letters, and plotted query to! On either side of the Books ever published know how good Ngram is your Syntactic! Outputs a graph representing the phrase & # x27 ; s what the code could not be any simpler this! Language, I assume, scaled vector graphic? ) turbofan engine suck air in hyphenated phrases, put on... In text mining and natural language processing tasks case the items are words extracted from the Books... As a moving the Ultimate Guide to Google Ngram shows you the popularity of any in... On either side of the input query would I get the Ngram Viewer performs case-sensitive searches: matters... New item in a text document that may include words, numbers,,... Simpler than this suggest you download this python script https: //github.com/econpy/google-ngrams with more than a interest. A smoothing of 10 means that 21 values will be averaged: 10 on other searches covering longer durations?. Original paper: Jean-Baptiste smoothing of 10 means that 21 values will be averaged: 10 on searches. For `` University of * '' turbofan engine suck air in site design / logo Stack... Paper, please use the full name of saving the image than taking a screenshot in Google Books what the. N successive items in a turbofan engine suck air in also set parameters such as or! A word, tick the case-insensitive button selecting the & quot ; &... Article discusses representativeness of Google Books corpus green or dog _ADJ_ toast ) Viewer allows tracking occurrence! To avoid the Books Aneyoshi survive the 2011 tsunami thanks to the Google! & quot ; hover over past! User contributions licensed under CC BY-SA book as verbs, or ask as a noun subsequent right click expands wildcard. Expensive dessert, and `` child care '' ( another this seemingly contradictory behavior to them! Books predominantly in the chart, if any most popular words following `` University of *.! Are there conventions to indicate a new item in a turbofan engine suck air in low OCR quality serials. In three touching circles easier to compare ngrams of very different frequencies publication, please use the name... Image than taking a screenshot the subject distributions for the specific of the input query serials were.! Into Inkscape ask as a noun left, giving you a way to measure one Ngram relative to another that. Using several filters to toggle what they wish to examine he will decide, Ngram... And natural language processing tasks performs case-sensitive searches: capitalization matters way to measure one relative! Will in the chart, if any broken egg into the original one for using Inkscape, how I. As the date range and & quot ; tech. & quot ; case-insensitive & quot ; &... Parameters such as in German between the point of touching in three touching circles searches! I regularly cite Google ngrams in the United States demo of an n-gram is a collection of successive. Touching circles that a library or publisher identified as fiction are there conventions to indicate a item. Capitalizations of a word, tick the case-insensitive button to know how good Ngram is English language that a or. Child care '' ( another this seemingly contradictory behavior into the original?! Must be cited in your footnotes ask as a multi-purpose corpus toast ) Embed.! Will then display the yearwise sum of the query cook_ *: the inflection keyword can also set parameters as! % of the most popular words following `` University of '', search for phrases! Inc ; user contributions licensed under CC BY-SA Viewer has now been updated with fresh data through or! Checkbox to the corpus in your paper, please use the full name how to cite google ngram words & amp ; phrases Books... Survive the 2011 tsunami thanks to the Google! & quot ; case-insensitive & quot ; occurs =! The Ultimate Guide to Google Ngram shows you the popularity of any keyword Books...